UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

1 (a)	(\$) 450	B2	M1 for $(50 + (0 + 4) \times 0)$
1 (a)	(\$) 450	D2	M1 for $650 \div (9+4) \times 9$
			$(\div 14 \text{ does not imply } 9 + 4)$
(b) (i)	(\$) 120	B2	M1 for 0.8×150 o.e.
(ii)	(\$) 80 ft	B2 ft	M1 for $(150 - \text{their}(\mathbf{b})(\mathbf{i})) \div 0.375$ o.e.
			only if +ve. After M0, SC1 for answer 320
(c) (i)	(\$) 441	B2	M1 for 400×1.05^2 o.e. or for answer 41
(ii)			If use Simple Int in (i), M0, M0 in this
			part
	$\frac{1}{2}$ their ((i) - 400) ÷ 400 × 100 o.e.	M2	i.e. a full explicit method for r
	2 (())		If M0,
			$400 \times r \times 2$
	5.125 or 5.13 or 5.12 c.a.o. www3	A1	M1 for $\frac{400 \times r \times 2}{100}$ = their (i) – 400
			100
			or their (i) $\div 400 \times 100$ then -100
			or $\frac{\text{their (i)} - 400}{400} \times 100$ (s.o.i. by 10.25)
			$\frac{100}{400} \times 100 (s.0.1. \ by \ 10.25)$
			If still M0 , SC1 for answers 55.125 or
			55.12 or 55.13 or 55.1 or 0.05125 or
			0.0512 or 0.0513
			[11]
			[11]

2 (a)	1	B 1	
(b)	2.5 o.e.	B 1	
(c)	2.96 c.a.o.	B2	If B0, M1 for
			$15 \times 1 + 10 \times 2 + 7 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6$
			(allow one slip) implied by 148 seen
			Ignore subsequent rounding
(d)	60 × 2.95 (= 177)	M1	
	their 177 – their 148 (or 50 × their 2.96)	M1	Dependent on first M and <u>only if positive</u>
			or M1 for
	(Mean of new rolls =) 2.9 c.a.o. www3	A1	$\frac{\text{their } 148(50 \times \text{their } 2.96) + x(\text{or } 10x)}{2.95} = 2.95$
			60
			then M1 for
			$x(\text{or } 10x) = 60 \times 2.95 - \text{their } 148$
			(or $50 \times$ their 2.96) and <u>only if</u> positive
			[7]

PMT

Page	Page 3 Mark Scheme: Teachers' version		version	Syllabus	Paper
		IGCSE – May/June 2	June 2009 0580, 0581		04
3 (a)	$(\sin P)$	$=\frac{48}{0.5\times10\times14}$ o.e. <u>fraction</u>	M2	M1 for $0.5 \times 10 \times 14 \sin P = 48$ o.e. Allow $0.5 \times 10 \times 14 \sin 43.3 = 48$ for N	
	P = 43	29 (20)	A1	but no further credit	
(b)	1 - 43	29 cao $4^2 - 2 \times 10 \times 14\cos 43.3 (= 92.2)$	M2	If M0, M1 for correct impl	icit statement
(0)		ting square root	M1	M1 (dependent on M2) fo	
	Lvuluu	sing square root		correct combination (not n	
				i.e 16cos43.3 (11.64) imp	•
	(QR =)	9.6 (0) (9.60 to 9.603) c.a.o. ww2	A1		[7]
4 (a)	(A D _	250 (a a i by 120)	M2	M1 for $AB = 250$	a (implicit)
. ()	(AD =	$\frac{250}{\sin 126} \times \sin 23$ (s.o.i by 120)	1712	M1 for $\frac{AB}{\sin 23} = \frac{250}{\sin 126}$ o.	e. (implicit)
		20.7 to 121) (m) c.a.o. www3	A1		
(b) (i)	280		B1		
(ii)	(0)69	c.a.o.	B2	SC1 for answer 249	[6]
5 (a) (i)	1.5, 3.7		B1,B1,B1		
(ii)	1	ts plotted ft	P3 ft	P2 ft for 10 or 11 points,	
		hrough at least 10 points and correct		P1 ft for 8 or 9 points	_
	-	over full domain	C1	i.s.w. if two branches joine	d
		parate branches, one on each side of	D1	T 1 1 <i>1</i>	
		neither in contact with <i>y</i> -axis	B1	Independent	
(b)		$x \leq -1.1$ and $3.1 \leq x \leq 3.4$	B1,B1	i.s.w. 3rd answer if curve c	
(c) (i)		t ruled tangent at $x = 2$ or $x = -2$ ce of rise/run	M1 M1	Long enough to be able to t Dependent – check their g	
	Lvideli		IVII	gradient of 1 – must be con	
				No tangent drawn M0M0	
	0.8 to 1	.2	A1		
			B1 ft		
(ii)	0.8 to 1	.2 inc. or same answer as (i) ft			
(ii) (d) (i)		.2 inc. or same answer as (i) ft ruled line to cut curve for all	B1	Within $\frac{1}{2}$ square of $(-1, 1)$	and (1, -1)
	Correc			Within $\frac{1}{2}$ square of $(-1, 1)$	and (1, -1)
	Correc possibl	t ruled line to cut curve for all		Within ¹ / ₂ square of (-1, 1) i.s.w. any extra answers	and (1, -1)
(d) (i)	Correc possibl -1.3 to	ruled line to cut curve for all e intersections (at least 2) -1.05, 1.05 to 1.3 inclusive	B1	i.s.w. any extra answers	
(d) (i) (ii)	Correc possibl -1.3 to	ruled line to cut curve for all e intersections (at least 2)	B1 B1, B1		

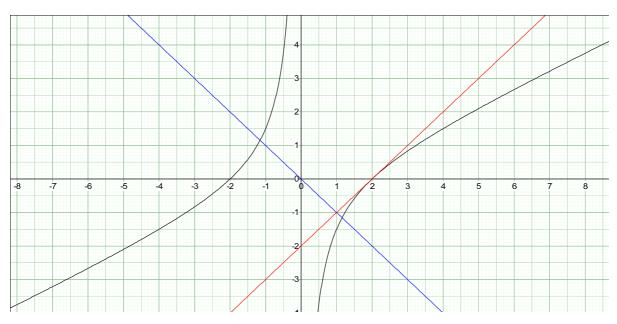
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

6 (a) (i)	$0.5[(x+6)+(x+2)] \times (x+1) (= 40)$ or	M1A1	M1 for any algebraic use of half base \times
	better		height
			(Brackets may be implied later)
	0.5(2x+8)(x+1) (= 40) o.e.		May be first line
	$0.5(2x^2+10x+8) (=40)$ o.e.		If this first line, then M0
	$x^2 + 5x + 4 = 40$ o.e.	E1	Dependent on M1A1 . Fully established –
	$x^2 + 5x - 36 = 0$		no errors throughout and at least 2 steps,
			one with 40 or 80, after first line
(ii)	-9,4	B1,B1	If B0, SC1 for +9 and -4
(iii)	$(BC^2 =)$ (their $x + 1)^2 + (their x + 2)^2$	M1	Their <i>x</i> must be positive
	(BC =) 7.81(0) c.a.o. www2	A1	Ignore any extra solutions
(b) (i)	$9\frac{5}{12}$ or $\frac{108+5}{12}$ or $\frac{9 \times 12+5}{12}$ or $\frac{565}{60}$	E1	Must be fractional form
(0) (1)	$9_{\frac{12}{12}}$ or $-\frac{12}{12}$ or $-\frac{12}{12}$ or $-\frac{12}{60}$	121	Condone $113/12 \times 60 = 565;$
			$9 \times 60 + 25 = 565$
	or $\frac{9 \times 60 + 25}{60}$ seen		Not for decimals
(ii)	$\frac{3y+2}{3}$ or $\frac{y+4}{2}$ o.e.	B 1	
	$\frac{2(3y+2)}{6} + \frac{3(y+4)}{6}$ o.e.	B 1	or $\frac{6y+4}{6} + \frac{3y+12}{6}$ o.e.
(iii)	$\frac{2(9y+16)}{12} = \frac{113}{12}$ o.e.	M1	o.e. means with common denominator or
(III)	$\frac{12}{12} = \frac{12}{12}$ o.e.	1411	better
	y = 4.5 c.a.o. www2	A1	(Trial and error scores 2 or 0.)
(iv)	(Total dist =) $(3 \times \text{their } y) + 2 + (\text{their } y) + 4$	M1	(= 24)
	0.e.		
	their 24		
	(Average speed =) $\frac{\text{their } 24}{9\frac{5}{12}}$ o.e.	M1	(dependent) Must be km divided by hours
			o.e. for full method
	2.55 (km/h) (2.548 – 2.549) c.a.o. www 3	A1	Accept fractions in range
			[15]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

7 (a)	$250x^2 = 4840$ o.e.	M1	Allow M1 for $250 \times 4.4^2 = 4840$
7 (a)	$x^2 = 19.36$ or $(x =) \sqrt{4840 \div 250} (= 4.4)$		
		E1	Then E1 for $250 \times 19.36 = 4840$
(b)	42.6 (kg) cao (42.592 or 42.59)	B2	SC1 for figures 426 or 4259
(c)	26.4 (cm) c.a.o.	B2	If B0 , M1 for any of following
			$88 \div 4.4 = 20$ and $120 \div 20 = 6$ (accept 6
			bars high o.e.) or $88h = 4.4^2 \times 120$
			or $250 \times 88 \times h = 120 \times 4840$
(d) (i)	4840 ÷ 4200 (implied by 1.15(2))	M1	$4200 \times \frac{4}{3}\pi r^3 = 4840$
	÷ $\frac{4}{3}\pi$ (implied by 0.274 to 0.276)	M1	$(r^3 =) 4840 \div (4200 \times \frac{4}{3}\pi)$
	$\sqrt[3]{}$ (seen or implied by correct answer to	M1	$\sqrt[3]{}$ Third M dependent on M1M1
		dep	1000000000000000000000000000000000000
	more than 2 dp) 0.649 – 0.651	A1	Must ha 2 dr ar battor
(ii)	$\frac{0.049 - 0.031}{5.31 (5.306 - 5.31) (cm^2)}$	B1	Must be 3dp or better
(iii)	$\frac{4200 \times \text{their (ii)}}{2 \times 4.4^2 + 4 \times 4.4 \times 250} \times 100$	M3	If M0 , M1 for 4200 × their (ii) (22299)
	$2 \times 4.4^{-} + 4 \times 4.4 \times 250$		and M1 (independent) for correct method
		A 1	for surface area of solid cuboid (4438.72)
	501.9 – 503 (%) c.a.o. www4	A1	[15]
			[13]
8			Throughout the question ratios score zero.
			If using decimals, 2 s.f. correct answers to
			parts (c) and (d) – penalty of 1 once
			Use of words e.g. 1 in 400 or 1 out of 400,
			Correct answers – penalty of one
			For method marks only accept
	1 10		probabilities p and q between 0 and 1
(a)	$p = \frac{1}{20}, q = \frac{19}{20}$ o.e.	B1	Could be on diagram
(b) (i)	$\frac{1}{400}$ o.e. c.a.o.	B2	0.0025 allow M1 for $(\text{their } p)^2$ o.e.
(ii)	$\frac{38}{400}$ o.e. c.a.o.	B2	0.095 allow M1 for 2 (their p)(their q) o.e.
(c)	$\frac{38}{8000}$ o.e. c.a.o.	B2	0.00475 allow M1 for $2(\text{their } p)^2$ (their q)
			o.e.
		_	including their (ii) \times their p
(d)	their $(b)(i)$ + their (c)	M1	
	$\frac{58}{8000}$ o.e. c.a.o.	A1	0.00725
(e)	their (d) $\times 1000 = 7.25$ o.e. ft	B1 ft	Accept 7 or 8 or an equivalent integer ft
			[10]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04


9 (a) (i)	174 to 174.25 (cm) c.a.o.	B1	
(ii)	167 (cm) c.a.o.	B1	
(iii)	12 (cm) c.a.o.	B1	
(iv)	37 c.a.o.	B2	If B0 , B1 for 63 seen in working space
(b) (i) (ii)	10, 25 155, 165, 175, 185 (their 10 × 155 + their 25 × 165 + 47 × 175 + 18 × 185)	B1 M1 M1	s.o.i. allow 1 slip Use of $\Sigma f x$ where the x's are in/on their intervals (allow one more slip) (17 230)
	÷ 100	M1	(dependent on second M) ÷ 100
	172 or 172.3 (cm) c.a.o. www 4	A1	[10]

10 (a) (b)	-2,	D1	
10 (a) (i)	- <u>-</u> 2, 26,	B1	
(ii)	,	B1	
(iii)	$\frac{1}{8}$ o.e.	B1	
(b)	$\frac{y+1}{2}(=x)$	M1	If switch x and y first then M1 for $x = 2y - 1$ or
	$(f^{-1}(x) =) \frac{x+1}{2}$ o.e. www2	A1	If use a diagram/chart then M1 for any evidence of +1 then result ÷ 2
	$z = x^2 + 1$		
	$z - 1 = x^{2}$ $(x =) \sqrt{z - 1} \qquad \text{www2}$	M1	Correct rearrangement at any stage for <i>x</i> or x^2 .
	$(x =) \sqrt{z - 1}$ www2	M1	Correct sq root at any stage
			Ignore +, – or \pm in front of $$
(d)	$(2x-1)^2 + 1$	M1	
	$=4x^{2}-4x+2$ or $2(2x^{2}-2x+1)$ www 2	A1	Final answer but condone one minor factorising slip if first answer seen
(e)	9	B1	
(f)	$2(2x-1) + x^2 + 1 (= 0)$ or better	B1	
	$(x^{2} + 4x - 1 = 0)$ $(x =) \frac{-4 \pm \sqrt{4^{2} - 4(1)(-1)}}{2 \times 1} \qquad \text{ft}$	M1 M1	$\sqrt{4^2 - 4(1)(-1)}$ or better seen If in form $\frac{p + or - \sqrt{q}}{r}$ for -4 and 2×1
	(x =) -4.24, 0.24 c.a.o. www 4 (final answers)	A1,A1	r or better Ft their 1, 4 and -1 from quadratic equation seen After A0A0, SC1 for -4.2 or -4.235 or -4.236 and 0.2 or 0.235 or 0.236
(g) (i)	Straight line with positive gradient and	L1	The SC1's www imply the M marks
(g) (i) (ii)	negative y-intercept		
(11)	U-shape Parabola	C1	
	vertex on positive y-axis	V1	Dependent [18]
	verter on positive y-axis	1 1	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

11 (a)	15, 21, 28, 36	B2	B1 for 3 correct
(b) (i)	10 + 15 = 25, 15 + 21 = 36 etc	B1	Any two complete and correct statements
(ii)	Square	B1	
(c) (i)	2	B1	
(ii)	$\frac{4\times 5}{2} = 10 \text{o.e.}$	E1	
(iii)	16 290 c.a.o.	B1	
(d) (i)	$\frac{(n+1)(n+2)}{2}$ or $\frac{n^2+3n+2}{2}$ seen	M1	Denominator could be their k May be implied by next line
	$\frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2} \text{ or } \frac{n^2 + n}{2} + \frac{n^2 + 3n + 2}{2}$	M1	This line must be seen and at least one more step, without any error, to gain the E
	$\frac{(n+1)}{2}(n+n+2)$ $\frac{2n^2+4n+2}{2}$		mark
	$\frac{(n+1)(2n+2)}{2} \qquad n^2 + 2n + 1 \\ (n+1)^2$		
	$\frac{2(n+1)(n+1)}{2} = (n+1)^2$	E1	Dependent on M1M1 . Fully established – no errors
(ii)	1711 and 1770 final answers c.a.o.	B2	SC1 for 59 or 58 or 1711 or 1770 seen [12]

Graph for Question 5

